基本信息:
蒋继望、博士、上岗副研究员(副教授)、博士生导师
道路工程系副主任(分管研究生培养)、系支部委员、院务助理
所属团队:道路智能养护技术研究中心
办公地点:东南大学九龙湖校区31399金沙娱场城大楼502室
联系方式:jiang_jiwang@seu.edu.cn
主要从事沥青路面健康状况评价、养护决策与养护技术开发等方面的研究。主要成果已服务于江苏、辽宁、河南等地区的高速公路建养工程。已发表SCI收录期刊论文100余篇,学术专著1本,获授权发明专利13项。主持和参与了包括国家自然科学基金、香港研资局、Wis-DOT、江苏省交通厅等各类科研项目。担任了世界交通运输大会(WTC)公路学部GL04学科秘书,江苏省工程师学会道路与轨道专委会副秘书长,国际华人基础设施工作者协会(IACIP)、国际材料与结构研究实验联合会(RILEM)等青年委员会成员,国际路面科学与工程协学会(APSE)学术委员会成员,《Scientific Reports》、《Transportation Engineering》和《Fluid Dynamics & Materials Processing》期刊编委,《Journal of Traffic and Transportation Engineering》、《Journal of Road Engineering》、《市政技术》、《公路工程》和《公路交通科技(英文版)》的青年编委,是国内外多个学术期刊的优质审稿专家。
欢迎有志于投身道路基础设施新材料、低碳养护、智能运维等相关领域,有工程、材料、力学、化学、计算机等相关背景的学生报考硕士或博士研究生。
研究方向:
l 在役路面结构状况检测与评价
l AI赋能的路面养护管理与决策
l 沥青路面的多尺度表征与建模
l 低碳功能性材料研发与应用
教育经历:
2014.09-2019.05,东南大学,交通运输工程,博士学位
2017.09-2018.09,威斯康星大学麦迪逊分校,土木与环境工程,访问学者
2010.09-2014.06,东南大学,道路桥梁与渡河工程,学士学位
工作经历:
2022.09-至今,东南大学31399金沙娱场城,副研究员
2019.08-2022.08,香港理工大学土木与环境工程系,博士后
讲授课程:
l 道路工程基础
l 道路勘测设计
l 专业讲座(苏州、无锡校区)
l 交通基础设施案例(苏州校区)
l 道路安全与景观
科研项目:
l 国家自然科学基金青年基金项目,乳化沥青冷再生混合料水分梯度迁移、微结构发育及开裂行为研究,主持,2022-2024.
l 江苏省科协青年科技人才托举工程(建设领域),主持,2023-2025.
l 西藏自治区科技厅重点研发及转化项目,西藏冻土区道路结构融沉智能监测与预防关键技术研究,参与,2024-2026.
l 香港研资局面上项目(GRF),乳化沥青基养护剂与透水沥青混合料短期及长期相互作用机理的多尺度研究,参与,2021-2023.
l 香港理工大学博士后计划项目,基于图像分析技术的沥青混合料疲劳性能多尺度表征研究,主持,2019-2022.
l 道路工程四川省重点实验室开放基金,基于乳化沥青再生剂的透水型沥青铺装预养护关键技术研究,主持,2022-2023.
l 江苏交通控股集团,以“安全性提升”为导向的高速公路数据分析及路面养护策略研究,主持,2023.
l 中铁十九局集团,路面工程全结构耐久性能提升及绿色施工关键技术研究,主持,2023-2025.
l 无锡交通建设工程集团有限公司,改扩建工程半刚性基层裂缝预防与智能监测关键技术研究,主持,2024-2025.
l 辽宁省交通科技项目,改扩建工程易清除道路交通标线研发与应用研究,主持,2024-2025.
l 辽宁省交通科技项目,京哈高速公路绥中(冀辽界)至盘锦段改扩建工程旧沥青路面性能综合评估,主持,2023-2025.
l 中铁二局集团,智能自修复沥青路面材料制备方法及功能设计关键技术研究,主持,2023-2025.
l 淮安市交通建设项目,市政沥青路面材料高效热再生精细化测试和评价关键技术研究,主持,2023-2024.
学术成果:
专著:
[1] 顾兴宇,蒋继望,胡栋梁. 沥青老化及再生行为的计算模拟:分子动力学与量子化学. 东南大学出版社,2024.
代表性期刊论文:
[1] Jiang, J., Wang, J., Zhao, Z., Ni, F., Xu, D., Zhang, Z., & Leng, Z. (2023). Drying behavior modeling of bitumen emulsion-based cold in-place recycling pavement considering heat-moisture coupling effects. Journal of Cleaner Production, 429, 139634.
[2] Zhao, D., Jiang, J., Gu, X., Liu, J., Wang, J., & Yang, G. (2025). Value-added recycling of plant waste for modification of asphalt pavement used aggregates: Interface enhancement and carbon sequestration. Chemical Engineering Journal, 159822.
[3] Liu, T., Jiang, J., & Gong, C. (2024). Micro-interface dynamics and macro-performance improvement in bitumen emulsion cold mixing for sustainable pavements: A critical review of moisture's impact. Sustainable Materials and Technologies, e01169.
[4] Ding, J., Jiang, J., Lu, G., Wang, J., & Ni, F. (2024). Multi-physical modeling and automatic network-level prediction of the oxidation aging of in-situ asphalt pavements. Construction and Building Materials, 455, 139209.
[5] Jiang, J., Leng, Z., Yang, B., Lu, G., Tan, Z., Han, M., & Dong, Z. (2022). Penetration mechanism of the emulsion-based rejuvenator in damaged porous asphalt mixture: Microstructure characterization and 3D reconstruction. Materials & Design, 221, 111014.
[6] Jiang, J., Xu, D., Yu, S., & Ni, F. (2023). Micro-structural characterization of the lubrication behavior of asphalt binder during the compaction of asphalt mixture. Tribology International, 189, 108953.
[7] Zhao, Z., Jiang, J.*, Chen, Z., & Ni, F. (2022). Moisture migration of bitumen emulsion-based cold in-place recycling pavement after compaction: Real-time field measurement and laboratory investigation. Journal of Cleaner Production, 132213.
[8] Jiang, J., Zhao, Z., Jiang, X., Leng, Z., Yang, B., & Ni, F. (2023). Moisture migration characterization of bitumen emulsion-based cold in-place recycling mixture over curing. Materials and Structures, 56(7), 122.
[9] Jiang, J., Li, Y., Zhang, Y., & Bahia, H. U. (2022). Distribution of mortar film thickness and its relationship to mixture cracking resistance. International Journal of Pavement Engineering, 23(3), 824-833.
[10] 蒋继望, 冷真, 董泽蛟, & 倪富健. (2020). 沥青混合料自愈合性能与砂浆厚度分布特征关系. 中国公路学报, 33(10), 192.
[11] Yang, B., Jiang, J., Wang, H., Leng, Z., Sui, X., & Jiang, X. (2024). Optimization design of asphalt emulsion with rejuvenator towards a uniform distribution inside the damaged porous asphalt mixture for a better ravelling resistance. Case Studies in Construction Materials, 21, e03747.
[12] Yao, L., Jiang, J., Li, C., Leng, Z., & Ni, F. (2024). Structural condition assessment of asphalt pavement semi-Rigid bases using FWD deflection basin parameters. Road Materials and Pavement Design, 1-15.
[13] Tan, Z., Leng, Z., Jelagin, D., Cao, P., Jiang, J., Ashish, P. K., & Zou, F. (2023). Numerical modeling of the mechanical response of asphalt concrete in tension and compression. Mechanics of materials, 187, 104823.
[14] Yao, L., Leng, Z., Ni, F., Lu, G., & Jiang, J. (2024). Adaptive maintenance strategies to mitigate climate change impacts on asphalt pavements. Transportation Research Part D: Transport and Environment, 126, 104026.
[15] Ding, J., Han, Y., Zhang, Q., Jiang, J., Ni, F., & Ma, X. (2023). Impact of laboratory long-term aging procedures on intermediate-temperature behavior of asphalt binders in asphalt fine aggregate matrix mixtures. Journal of Transportation Engineering, Part B: Pavements, 149(1), 04022063.
[16] Li, D., Leng, Z., Zhang, S., Jiang, J., Yu, H., Wellner, F., & Leischner, S. (2022). Blending efficiency of reclaimed asphalt rubber pavement mixture and its correlation with cracking resistance. Resources, Conservation and Recycling, 185, 106506.
[17] Yao, L., Leng, Z., Jiang, J., & Ni, F. (2022). Large-scale maintenance and rehabilitation optimization for multi-lane highway asphalt pavement: a reinforcement learning approach. IEEE Transactions on Intelligent Transportation Systems, 23(11), 22094-22105.
[18] Ding, J., Jiang, J., Han, Y., Ni, F., Ma, X., & Li, Q. (2022). Rheology, chemical composition, and microstructure of the asphalt binder in fine aggregate matrix after different long-term laboratory aging procedures. Journal of Materials in Civil Engineering, 34(4), 04022014.
[19] Yao, L., Dong, Q., Jiang, J., & Ni, F. (2020). Deep reinforcement learning for long‐term pavement maintenance planning. Computer‐Aided Civil and Infrastructure Engineering, 35(11), 1230-1245.
[20] Gu, X., Dai, Y., & Jiang, J. (2020). Flexural behavior investigation of steel-GFRP hybrid-reinforced concrete beams based on experimental and numerical methods. Engineering Structures, 206, 110117.
[21] Zhou, Z., Gu, X., Jiang, J., Ni, F., & Jiang, Y. (2018). Nonrecoverable behavior of polymer modified and reclaimed asphalt pavement modified binder under different multiple stress creep recovery tests. Transportation Research Record, 2672(28), 324-336.
[22] Jiang, J., Dong, Q., Ni, F., & Zhao, Y. (2019). Effects of loading rate and temperature on cracking resistance characteristics of asphalt mixtures using nonnotched semicircular bending tests. Journal of Testing and Evaluation, 47(4), 2649-2663.
[23] 蒋继望, & 倪富健. (2017). 基于数字图像相关方法的沥青混合料疲劳性能研究 (英文). 东南大学学报: 英文版, 33(2), 216-223.
奖励及荣誉:
l 世界交通运输大会(WTC)优秀论文奖,2021
l 中欧功能性铺装会议(CEW2023), Best Paper Award,2023
l 江苏省优秀博士学位论文,2020
l 中国交通运输协会科学技术奖二等奖,2024(排6)
l 淮海科学技术奖一等奖,2022(排1),2024(排2)
l 中国商业联合会科学技术奖二等奖,2022(排6)
l 江苏省生产力理论与实践优秀成果奖特等奖,2022(排2)
l 中国产学研合作促进会产学研合作创新与促进奖,2022(排2)